Question 19 (4 marks)

(b)

In one of Einstein's famous thought experiments, a passenger travels on a train that passes through a station at 60% of the speed of light. According to the passenger, the length of the train carriage is 22 m from front to rear.

(a	a) A light in the train carriage is switched on. Compare the velocity of the light	1
	beam as seen by the passenger on the train and a rail worker standing on the	
	station platform.	
	The velocity of fight would be the same for the paxenger	ad
fre	rail worth. Clightis content in all referent flaves -> spend relo	HWY
	al day.	- 1

ENGIG.
Calculate the length of the carriage as observed by the rail worker on the station platform.
lo=22m
$l = lo \sqrt{l - \frac{V^2}{c^2}}$
1 V= 0.6C
$\ell = 22\sqrt{1-10.60^2}$
C2.
l = 17.6m
the length of me train will be 17.6m (3sf)
- //