

axi) Galvanic cell.	
(ii) \	•
anode reaction	
Fe (5) -> Fe2+ 2e-	0.44 V
(athode reaction	
(u2++2e> Cuis)	0.34 V -
	,
Fe(s) + Cy2+ -> Fe2+ + Cy(s)	0.101
[O-1 V is reeded]	
(fogles twitned when connected in circuit w/ electrodes or 'animal electricity' which was	discovered to
instead be a galvanic cell, by other scientists, experimentation of electron mon	
by other scientists,	
experimentation of electron mor	rement through
a circuit, containing to electrode	
an electrolyte and a power sour	c e
These other Scientists; Davy	and his young
lab assistant Michael Farada	y, extended on
Galvani's findings as mentione)
Davy was the first to dis	

BOARD OF STUDIES
He discovered that the frog was acting the
THE CHISCOPER THAT THE THOUGH WAS ENTED
circuit, therefore e - were able to circulate.
After Davy's death, Faraday continued research,
and has the one to name electrolyte . The
freg in Galvani's experiment was actually an
electrolyte - finishing the circuit). Faradays also
came up with 2 laws relating to his
findings
•
Foradays First Law.
amount of
The product (or accomposed product)
produced in a cell as directly proportion
Foradays First Law. amount of The product (or decomposed product) electrolysis is directly proportions that is
to the amount of electricity, put
through the cell.
Toese
Galvani, Dary and Faraday all contributed
to the industranding of electrochemical cells
and ar understanding of electron transfer
reactions

Desalination.
(i)
The artificants are gently trashed in 9
deionised nature bath for a long period of
time to get and of excess salt and other
fine particles that are on the surface.
The electrol sed to
Curators determine conditions - temp/pressur
by which these artifacts will have maximum
life-span, and they are put in these condition

of a) Using electrolysis. with an acidic electrolyte (MCI) place the metal electrode at the anode, and another metal electrocle at the authode. Observe the (rate of) comosion at the Repeat using a nietral electrolyte (420) (ii) It is observed that the Icell containing the acidic electrolyte had a faster rate of comosion than the nuetral etyelectrolyte cell. This supports the hypothesis that acidic environments accelerate the conosun of Shipnrecks Acidic compounds act as a catalyst in these reactions (corrosion) Therefore, the catalyst. by decreasing the activation energy increases the reaction vate. Also the more concentrated the environment is, corrosion/ the greater the reaction rate depends on concentrat electrolyte, nature of electrolyte, nature of

electrodes

corrosion of metallic objects is affected by temperature, amount of pressure dissolved oxygen and ocean has a mixture of high and low temperatures, high and low pressure and amounts of dissolved oxygen. These changes exoccur at different ocean depths しいナノ The ocean is RELATIVELY warm the depth whereby light in no longer ponetrable. At this depth temperatures are extremely which decreases rate of corrosion, & High temps therefore increase rate of comosion Dissolved oxygen is more present at lower depths. The more dissolved oxygen there greater the rate of reaction High Pressure is found at greater ocean depths. High pressure promotes reactions (oxygan reactions - comosion the rate of reaction increases

increases.		
These three factors coincide to create an		
environment at great depths which enables		
fast consion of metallic objects		