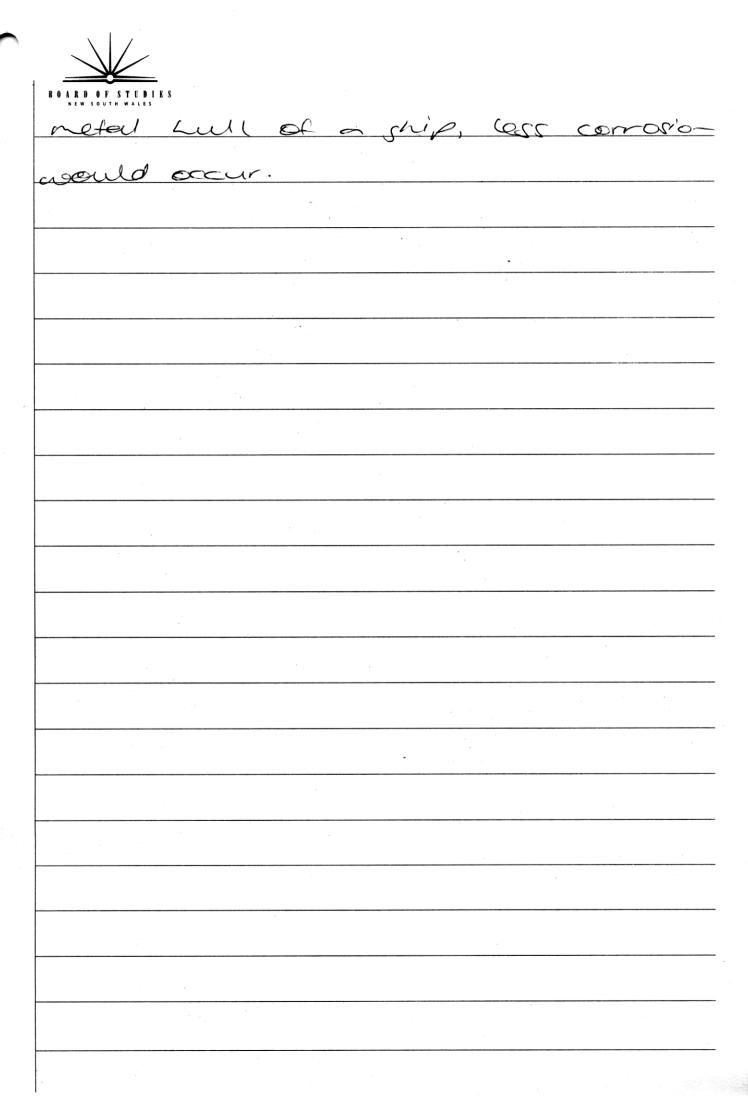


BOARD OF STUDIES NEW SOUTH WALES
Therefore thereasing our knowledge of
now sompounds can be decomposed.
Then Favaday created by First Cawa
Then Favaday created his first Caws analysis of which involved a quantative electrolysis.
the discovered that the quantity of mass
deposited of the cathode way in
proportion to the quantity/quount of elect
current passed through the circuit. This
(amount) of the metal at the cathode
2 grams. His theory is recognised of
mx 9 - quantity (timen)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
mass proportional where $q = I \times t$ (amps-current)
(amps-current)
Both Faraday and Davy have
significantly impacted in our
understandings of è transfer reactions.

c)?) A nethod for removing salt from
an artefact would be Electrolysis.
II) Silver Artefacts
1) cleaning of encryptations: - the artefact is
closined by using dilute HCI or acetic acid
2) restoring: - the reaction occurring at
the anode is:- $Ag_2S + 2\dot{e} = 2Ag^+ + S^{2-}$
and the costhode is:-
OH- in form of Na (OH)
10200) + 420 + 20 = 20H
Exectedysis there to remove the back
Agrs and maybe some Agrc1 som artefact
and leave metal intact.
Once this has occured the arteface
should be free of all chemicals of
the metal in question and able to be
Stabilised.

3/ preserving: - a clear (acquer is used to were the artefact and present any 02/H2O getting in and causing further Corrogion. d) i) beakers are set-up. One beaker with water and rail in it One beaker with acid solution and roul in it One beater with (strong) acid solution and One beater with a basic solution + rail , Lit These are left for several days and the amount of then observed. It rust or corrosion appearing is compared to one another. ii) Acidic environments do enhance corrasion of superecks so they does support the myothesis. shipwrecks are made from steel (a iron + corboalloy) similar to nails (steel/iron). So the nails represent in a smaller


BOARD OF STUDIES NEW SOUTH WALES
proportion, the shipwrecks.
When the nail is in the traveral environment
(water and 0, present) and pt=7, corrosio-
is at a constant rate and this is used as
a control. However observed ? The
oxidic environments the iron has noticeably
corroded more rapidly than the neutral
and bosic environments. This is because
the ron and the acid parties together
push the equilibrium to the RHS. Lence
coursing more rust. However, is basic
solution the egim is the purhed
more to LHI therefore not premoting
nist.
•

e) It would be expected that at coner there is less dopths of occan where displaced oxygen and temp. is much colder rate. Howeve discovered, noticed that it had decayed and corraded much more rapidly than first thought of. This is because, at the depths of the ocean, an anexerobic organism - called sulfate - reducing backenon - form a perous layer the metallic objects at bottom of ocoa. The better source of these sulfatereducing Lacteria are from hydro-Hemal vents. They form this longer o. the object which then couper decay nach more rapidly. Instead of forming a non-porous (orger which would reside corradon.

These backeria work a the objects quite easily as they are macrobic and don't reed oxygen to survive. Also at such cold temperatures, it enhances corrosion. As depth decreases, oxygen and ritrogen decrease however Os dognit The carbon dioxide can often react to create CaCO3 (awhite pote) which can also form on metallic objects. Copper is soft and costly and corredes much more quickly than bronze which is cheaper also + more flexitle. However he deeper the ocean depth, the more early the metal will corrode no matter how inesistant towards 60rrosion Mowever it surface alloys or new paints were used to pretect the

