Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) Find the values of k for which the quadratic equation $3 x^{2}+2 x+k=0$ has no real roots.
(b)

In the diagram, $A B C$ is an isosceles triangle with $\angle A B C=\angle A C B$. The line $L M N$ is drawn as shown so that $C L=C M$, and $\angle C L M=x^{\circ}$.

Copy or trace the diagram into your Writing Booklet.
(i) Show that $\angle A B C=180-2 x^{\circ}$.
(ii) Hence show that $\angle T N L=3 x^{\circ}$.
(c) (i) Sketch the curve $y=3 \sin 2 x$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(ii) On your diagram for part (i), sketch the line $y=\frac{1}{4} x$, and shade the region represented by

$$
\int_{0}^{\frac{\pi}{4}}\left(3 \sin 2 x-\frac{1}{4} x\right) d x
$$

(iii) Find the exact value of the integral in part (ii).

