Question 8 (12 marks) Use a SEPARATE writing booklet.
(a) In November 1923, 18 koalas were introduced on Kangaroo Island.

5 By November 1993, the number of koalas had increased to 5000.

Assume that the number $N$ of koalas is increasing exponentially and satisfies an equation of the form $N=N_{0} e^{k t}$, where $N_{0}$ and $k$ are constants and $t$ is measured in years from November 1923.

Find the values of $N_{0}$ and $k$, and predict the number of koalas that will be present on Kangaroo Island in November 2001.
(b) Five candidates, $A, B, C, D$ and $E$, are standing for an election. Their names are written on pieces of cardboard that are placed in a barrel and are drawn out randomly to determine their positions on the ballot paper.
(i) What is the probability that $A$ is drawn first?
(ii) What is the probability that the order of the names on the ballot paper is that shown below?


Question 8 continues on page 11

Question 8 (continued)
(c)


The diagram shows a ten-centimetre high glass that is being filled with water at a constant rate (by volume). Let $y=f(t)$ be the depth of water in the glass as a function of time $t$.
(i) Find the approximate depth $y_{1}$ at which $\frac{d y}{d t}$ is a maximum.

Find the approximate depth $y_{2}$ at which $\frac{d y}{d t}$ is a minimum.
(ii) Assume that the glass takes 5 seconds to fill.

Graph $y=f(t)$ and identify any points on your graph where the concavity changes.

## End of Question 8

