Question 9 (12 marks) Use a SEPARATE writing booklet.
(a)

In the diagram, $A B C$ is an isosceles triangle where $\angle B A C=\frac{3 \pi}{5}$ and $A B=A C=1$. The point D is chosen on $B C$ such that $C D=1$.

Let $B C=x$, and let $\angle A B C=\theta$, and note that $\theta=\frac{\pi}{5}$.
(i) Show that $\angle A D C=2 \theta$ and hence show that triangles $D B A$ and $A B C$ are similar.
(ii) From part (i) deduce that $x^{2}-x-1=0$.
(iii) By using the cosine rule, deduce that

$$
\cos \frac{\pi}{5}=\frac{1+\sqrt{5}}{4}
$$

(b) When a valve is released, a chemical flows into a large tank that is initially empty. The volume, V litres, of chemical in the tank increases at the rate

$$
\frac{d V}{d t}=2 e^{t}+2 e^{-t}
$$

where t is measured in hours from the time the valve is released.
(i) At what rate does the chemical initially enter the tank?
(ii) Use integration to find an expression for V in terms of t.
(iii) Show that $2 e^{2 t}-3 e^{t}-2=0$ when $V=3$.
(iv) Find t, to the nearest minute, when $V=3$.

