Question 10 (12 marks) Use a SEPARATE writing booklet.
(a) A circular pizza of radius 20 cm is cut into sectors. Each sector is to be placed on a circular plate that is just large enough to contain that sector.
(i) A sector of pizza is cut where the angle θ at its centre satisfies $0<\theta \leq \frac{\pi}{2}$.

It is placed on a circular plate, of radius $r \mathrm{~cm}$ and centre C, as shown below.

Show that $r=10 \sec \frac{\theta}{2}$ for $0<\theta \leq \frac{\pi}{2}$.

Question 10 continues on page 13

Question 10 (continued)
(ii) Another sector of pizza is cut where the angle θ at its centre satisfies

1

$$
\frac{\pi}{2}<\theta<\pi
$$

This sector of pizza is placed on a circular plate as shown below. Again, we let the radius of the plate be $r \mathrm{~cm}$, and we let the centre be C.

Show that $r=20 \sin \frac{\theta}{2}$ for $\frac{\pi}{2}<\theta<\pi$.
(iii) Sketch the graph of r, as defined by the equations in parts (i) and (ii), 3 for $0<\theta<\pi$.

Question 10 continues on page 14

Question 10 (continued)
(b) On a dark night, two ships, Saga and Hero, sail parallel to a straight coastline on which there are two lights of equal brightness, 16 kilometres apart.

Suppose the coastline is represented by the x axis where the origin O is chosen to be the midpoint of the light sources. It is known that the (total) brightness from the lights on a ship at point $P(x, b)$ is

$$
I=\frac{1}{b^{2}+(x+8)^{2}}+\frac{1}{b^{2}+(x-8)^{2}}
$$

(i) Show that $\frac{d I}{d x}=-\frac{2 P}{Q}$ where

$$
\begin{aligned}
& \quad P=\left[(x+8)\left(b^{2}+(x-8)^{2}\right)^{2}+(x-8)\left(b^{2}+(x+8)^{2}\right)^{2}\right] \\
& \text { and } Q=\left(b^{2}+(x+8)^{2}\right)^{2}\left(b^{2}+(x-8)^{2}\right)^{2}
\end{aligned}
$$

To answer parts (ii) and (iii), you may assume the following factorisation, given by a computer package, that

$$
P=2 x\left(x^{2}+64+b^{2}+16 \sqrt{64+b^{2}}\right)\left(x^{2}+64+b^{2}-16 \sqrt{64+b^{2}}\right) .
$$

(ii) Saga sails parallel to the coast at a distance 15 km from the coast.

By considering $\frac{d I}{d x}$, show that, as Saga sails from left to right, the brightness on Saga increases to a maximum when $x=0$ and then decreases.
(iii) Hero sails parallel to the coast at a distance 6 km from the coast.

Describe how the brightness on Hero changes as Hero sails from left to right. Give clear reasons for your answer.

End of paper

