Question 3 $A_n = P\left(1 + \frac{v}{100}\right)^n$ a. - $\$1000\left(1+\frac{3.5}{100}\right)^{20}$ = 1000 (1.035)²⁰ =\$1989.79 (zdp). С b . \triangleright 54 126° Q 54° 126° A B B AQP= 126° (vert. opp. 2's). PQB = 54° (L's Str. line add up to 180° ... 180-126 = 54°) QPB = 54° (L's of isocoles D) DPB = 72° (L's is supple mentary i's add up to 186° 10-54-54 = 72°). Ч C. D(6,5) B(1,5) sunits. 3 (0,3) C. JOUNTS A (2,2). 1 x 0 3. 1 2 5 6

B 0	ARD OF STUDIES New south wales	

	Midpoint $x = \frac{x_1 + 2c_2}{2}$
(.	$\frac{1+2}{2}$
	= ³ / ₂ .
	= 15
	$\frac{y_1 + y_2}{2}$
	$\frac{y^2 - 2}{5 + 2}$ $= -2$
	$=\frac{7}{2}$
	= 3½.
	Midpoint is at $(1\frac{1}{2}, 3\frac{1}{2})$
ii	Midpoint is at (12, 32) perpendicular bisector. of AB.
	$m = \frac{5-z}{1-2}$
	$\frac{3}{-1}$
	3.
	$M_{\perp} = \frac{1}{3}$
	$y - 3\frac{1}{2} = \frac{1}{3}(x - 1\frac{1}{2})$
	$y = \frac{1}{3} \times - \frac{1}{2} + 3\frac{1}{2}$
	$y = \frac{1}{3} \times + 3$
	3y = 2 + 9.
	0=x+9-3y.

ARD OF STUDIES ii) x-3y+9=0 2c+9=3y. a = 0. 9=34 y=3. 2=0. B Point C (ies on (0,3) and is equidistant from A and B. iv. y=5 and 2-3y+9=0. porten. $5 = \frac{1}{3} \times + 3$. $2 = \frac{1}{3}x$ x=6. · y=5. V. Area of AABD. Area = 26xh. length of AD $AD = \sqrt{(2-6)^{2} + (2-5)^{2}}$ = 16 + 9. $= \pm \sqrt{25^7}$ as -5 cannot be a length. = = 5 = 5 units.

BOARD OF STUDIES NEW SOUTH WALES length of AB $AB = \int (2-1)^2 + (2-5)^2 = \int 1 + 9.$ =) 10 ! A-2xbxh. = 2xJTOX5. =7.9 units².