

Question 6

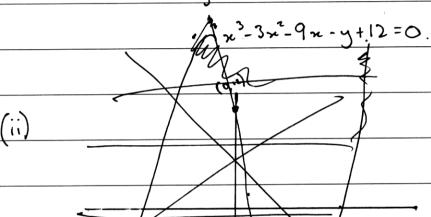
range = all values of yours.

m(200 y>0

$$f'(x) = 3(x^2-3x+x-3)$$

$$f(x) = \int 3x^2 - 6x - 9$$

signal the equation y: f(x) - x3-6+18 -x3-6+18

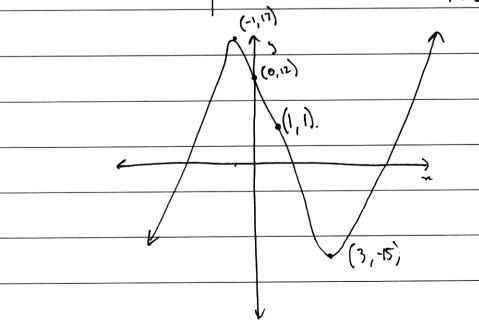

$$f(x) = \int 3x^2 - 6x - 9$$

$$= x^3 - 3x^2 - 9x + C$$

Point (0,12).

.. equation of care y=f(m)

y = x3-3x2-9x+12



turning points occur when dy = 0

3x2-6x-9=0

TP's = x=3,-1

TP's at (-1,17), (3,-15).

(mi) re is concave up for all values of re>1								
c) (d	(+) A	With N	ygydr	-			y= xc	
	VVW		_	- A A		MAN!	y= x-	
V-	z 777	7,	۲ ۲				2 Alay	1
	7					HOLL	- AgV	
	= TT (
	1							