Question 6 $a) = (4 - x^2)^{\frac{1}{2}}$ = Z - x 3 y=2.2 Rong= y has values for all real values at x b) f'(x) = 3(x+1)(x+3) $=(3x+3)(\chi-3)$ $= 3x^{2} - 9x + 3x - 9$ $y' = 3x^2 - 6x - 9$ $y = x^{3} - 3x^{2} - 9x + c$ $12 = 0^{3} - 3(0)^{2} - 9(0) + c$ c = 12 :. $f(x) = x^3 - 3x^2 - 9x + 12$

ARD OF STUDIES (-1,17) 3/00 (O, C) + incorcept ii) (1,1) point of inflexion <u>ح</u>> < (3,-15) $y = x^{3} - 3x^{2} - 9x + 12$ $(\mathbf{x}_{1})^{3} - 3(\mathbf{z})^{2} - 4(\mathbf{z}) + 12$ y'=3x -6x-9 y' = 6x - 6= 19-15 stat points occur at y'=0 i. x = -1 and x = 3test for maxima/minima (sub into y") y"= 6(-1)-6 = -12 KO maximum (-1,17) y"= 6(3)-6=12 >0 minimum (3,-15) Point of inflexion occurs at y =0 0 = 6x - 6x = ($y = (^3 - 3())^2 - 9(1) + 12$ point at inflexion (1,1) = 1-3-9+12

BOARD OF STUDIES NEW SOUTH WALES
Cuts x axis of y=0
$0 = x^{3} - 3z^{2} - 9 \times 4z$ $-(z = x^{3} - 3z^{2} + 1z)$ $9 = x^{2} - 3x^{2} + 1z$
(x-3)(x-1) (x-3)(x-1)
c) $\pi \int y^2 dx$ $y = \frac{\pi}{4}$ $4y = z^4$
$\frac{4}{(1+\sqrt{2})^{2}}$ $\frac{(1+\sqrt{2})^{2}}{(1+\sqrt{2})^{2}}$ $\frac{(1+\sqrt{2})^{2}}{(1+\sqrt{2})^{2}}$ $\frac{(1+\sqrt{2})^{2}}{(1+\sqrt{2})^{2}}$
$= 134 \cdot 04 u^{3}$