

a)	$y=\sqrt{4-x^2}$		
		•	1

$$x-int$$
 $y=0$ $y=int$ $x=0$

$$y = \sqrt{4-0^2}$$
 $0 = \sqrt{4-x^2}$
 $0 = 4-x^2$

x = ±2

$$b;$$
 $f'(x) = 3(x+1)(x-3)$

$$f(x) = \int 3(x^2 - 3x + x - 3) dx$$

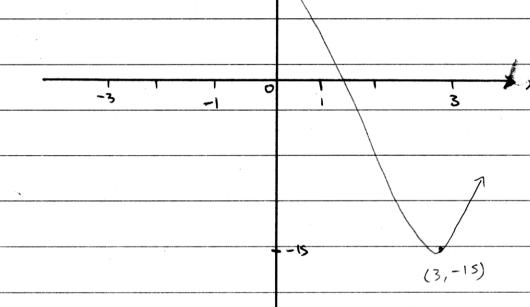
$$\frac{2}{3} \int 3x^2 - 6x - 9 \qquad dx$$

$$\frac{2}{3} \frac{3x^3}{3} - 6x^2 - 9x + 0$$

$$= x^3 - 3x^2 - 9x + C$$

(0,12)

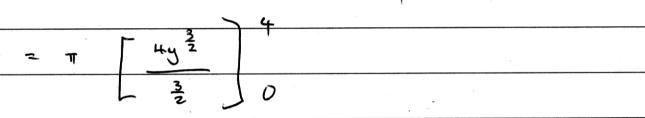
$$12 = 0^3 - 3(0)^2 - 9(0) + 0$$

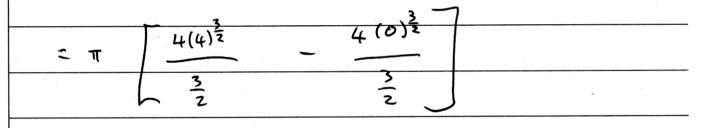

$$y = x^3 - 3x^2 - 9x + 12$$

12

$$m \rightarrow 1$$

$$f'(x) = 3x^2 - 6x - 9$$


$$t_{11}(x) = e^{x-e}$$


$$6x - 6 = 0$$

i. concave up for Box X >1

c) $V = \pi \int_{a}^{b} x^{2} dy$	y= 204
	4y= x4
$= \pi \int_{0}^{4} \left(4y\right)^{\frac{1}{2}} dx$	14y = x2
Jo	

$$= \pi \left[\frac{64}{3} \right]$$

: - 🗸	=	641	units	>			
		3					
			· .	•			