Question 10 (12 marks) Use the Question 10 Writing Booklet.
(a) In the diagram $A B C$ is an isosceles triangle with $A C=B C=x$. The point D on the interval $A B$ is chosen so that $A D=C D$. Let $A D=a, D B=y$ and $\angle A D C=\theta$.

(i) Show that $\triangle A B C$ is similar to $\triangle A C D$. 2
(ii) Show that $x^{2}=a^{2}+a y$.
(iii) Show that $y=a(1-2 \cos \theta)$. 2
(iv) Deduce that $y \leq 3 a$.

Question 10 (continued)
(b) The circle $x^{2}+y^{2}=r^{2}$ has radius r and centre O. The circle meets the positive x-axis at B. The point A is on the interval $O B$. A vertical line through A meets the circle at P. Let $\theta=\angle O P A$.

(i) The shaded region bounded by the $\operatorname{arc} P B$ and the intervals $A B$ and $A P$ is rotated about the x-axis. Show that the volume, V, formed is given by

$$
V=\frac{\pi r^{3}}{3}\left(2-3 \sin \theta+\sin ^{3} \theta\right)
$$

(ii)

A container is in the shape of a hemisphere of radius r metres. The container is initially horizontal and full of water. The container is then tilted at an angle of θ to the horizontal so that some water spills out.
(1) Find θ so that the depth of water remaining is one half of the original depth.
(2) What fraction of the original volume is left in the container?

End of paper

