Question 7 (12 marks) Use the Question 7 Writing Booklet.
(a) The acceleration of a particle is given by

$$
\ddot{x}=4 \cos 2 t
$$

where x is displacement in metres and t is time in seconds.
Initially the particle is at the origin with a velocity of $1 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Show that the velocity of the particle is given by

$$
\dot{x}=2 \sin 2 t+1
$$

(ii) Find the time when the particle first comes to rest.
(iii) Find the displacement, x, of the particle in terms of t.
(b) The parabola shown in the diagram is the graph $y=x^{2}$. The points $A(-1,1)$ and $B(2,4)$ are on the parabola.

(i) Find the equation of the tangent to the parabola at A.
(ii) Let M be the midpoint of $A B$.

There is a point C on the parabola such that the tangent at C is parallel to $A B$.

Show that the line $M C$ is vertical.
(iii) The tangent at A meets the line $M C$ at T.

Show that the line $B T$ is a tangent to the parabola.

