Question 9 (12 marks) Use the Question 9 Writing Booklet.
(a) (i) When Chris started a new job, $\$ 500$ was deposited into his superannuation fund at the beginning of each month. The money was invested at 0.5% per month, compounded monthly.

Let $\$ P$ be the value of the investment after 240 months, when Chris retires.

Show that $P=232175.55$.
(ii) After retirement, Chris withdraws $\$ 2000$ from the account at the end of each month, without making any further deposits. The account continues to earn interest at 0.5% per month.

Let $\$ A_{n}$ be the amount left in the account n months after Chris's retirement.
(1) Show that $A_{n}=(P-400000) \times 1.005^{n}+400000$.
(2) For how many months after retirement will there be money left in 2 the account?

Question 9 continues on page 15

Question 9 (continued)
(b) Let $y=f(x)$ be a function defined for $0 \leq x \leq 6$, with $f(0)=0$.

The diagram shows the graph of the derivative of $f, y=f^{\prime}(x)$.

The shaded region A_{1} has area 4 square units. The shaded region A_{2} has area 4 square units.
(i) For which values of x is $f(x)$ increasing? $\quad 1$
(ii) What is the maximum value of $f(x)$? 1
(iii) Find the value of $f(6)$. 1
(iv) Draw a graph of $y=f(x)$ for $0 \leq x \leq 6$.

End of Question 9

