muons. Time dilation (b) Calculate the velocity of the muons as they leave the accelerator. $tv = to $	2001 HIGHER SCHOOL CERTIFICATE EXAMINATION Physics Centre Numb	ber
Attempt Questions 16–26 Allow about 1 hour and 45 minutes for this part Answer the questions in the spaces provided. Show all relevant working in questions involving calculations. Marks Question 16 (4 marks) Muons are very short-lived particles that are created when energetic protons collide with each other. A beam of muons can be produced by very-high-energy particle accelerators. The high-speed muons produced for an experiment by the Fermilab accelerator are measured to have a lifetime of 5.0 microseconds. When these muons are brought to rest, their lifetime is measured to be 2.2 microseconds. (a) Name the effect demonstrated by these observations of the lifetimes of the muons. Time dilation (b) Calculate the velocity of the muons as they leave the accelerator. 3 5. 0x10 ⁻⁶ 5 = 2.2x10 ⁻⁶ 5. 2.2x10 ⁻⁶ 5. 3.00x0 ⁶ 7.0x10 ⁻⁶ 5. 2.2x10 ⁻⁶ 5. 3.00x0 ⁶ 7.0x10 ⁻⁶ 5. 3.00x0 ⁶ 7.0x10 ⁻⁶ 5. 3.00x0 ⁶ 7.0x10 ⁻⁶ 5. 3.00x10 ⁻⁶ 7.0x10 ⁻⁶ 7.0x1	Section I (continued)	
Show all relevant working in questions involving calculations. Marks Question 16 (4 marks) Muons are very short-lived particles that are created when energetic protons collide with each other. A beam of muons can be produced by very-high-energy particle accelerators. The high-speed muons produced for an experiment by the Fermilab accelerator are measured to have a lifetime of 5.0 microseconds. When these muons are brought to rest, their lifetime is measured to be 2.2 microseconds. (a) Name the effect demonstrated by these observations of the lifetimes of the muons. Time dilation (b) Calculate the velocity of the muons as they leave the accelerator. 3 $tv = to = to = 5 \cdot o / to = 5 \cdot o \times / to $	Attempt Questions 16–26	ber
Muons are very short-lived particles that are created when energetic protons collide with each other. A beam of muons can be produced by very-high-energy particle accelerators. 5 The high-speed muons produced for an experiment by the Fermilab accelerator are measured to have a lifetime of 5.0 microseconds. When these muons are brought to rest, their lifetime is measured to be 2.2 microseconds. (a) Name the effect demonstrated by these observations of the lifetimes of the muons. Time dilation (b) Calculate the velocity of the muons as they leave the accelerator. 3 40 40 40 40 40 40 40 40 40	Answer the questions in the spaces provided.	
Muons are very short-lived particles that are created when energetic protons collide with each other. A beam of muons can be produced by very-high-energy particle accelerators. 5 The high-speed muons produced for an experiment by the Fermilab accelerator are measured to have a lifetime of 5.0 microseconds. When these muons are brought to rest, their lifetime is measured to be 2.2 microseconds. (a) Name the effect demonstrated by these observations of the lifetimes of the muons. Time dilation. (b) Calculate the velocity of the muons as they leave the accelerator. 3 to = to = sin 5.0 f/s. = 5.0 x/0-6 s. to = 2.2 f/s = 2.2 x/10-6 s. 5.0 x/0-6 s = 2.2 x/10-6 s.	Show all relevant working in questions involving calculations.	
with each other. A beam of muons can be produced by very-high-energy particle accelerators. The high-speed muons produced for an experiment by the Fermilab accelerator are measured to have a lifetime of 5.0 microseconds. When these muons are brought to rest, their lifetime is measured to be 2.2 microseconds. (a) Name the effect demonstrated by these observations of the lifetimes of the muons. Time dilation (b) Calculate the velocity of the muons as they leave the accelerator. 3 $t_0 = \frac{t_0}{t_0} = \frac{t_0}{t_$		ks
The high-speed muons produced for an experiment by the Fermilab accelerator are measured to have a lifetime of 5.0 microseconds. When these muons are brought to rest, their lifetime is measured to be 2.2 microseconds. (a) Name the effect demonstrated by these observations of the lifetimes of the muons. Time dilation (b) Calculate the velocity of the muons as they leave the accelerator. 3 40 = 10 = 10 = 10 = 10 = 10 = 10 = 10 =	with each other. A beam of muons can be produced by very-high-energy particle accelerators.	
muons. Time dilation. (b) Calculate the velocity of the muons as they leave the accelerator. $t_0 = t_0 \qquad t_0 = s_0 s_0 s_0 = s_0 $	The high-speed muons produced for an experiment by the Fermilab accelerator are measured to have a lifetime of 5.0 microseconds. When these muons are brought to	
(b) Calculate the velocity of the muons as they leave the accelerator. $t_0 = \frac{t_0}{1 - \sqrt{2}} \qquad t_0 = \frac{5 \cdot 0 \text{ /s}}{5 \cdot 0 \text{ /s}} = \frac{5 \cdot 0 \times 10^{-6} \text{ s}}{5}$ $t_0 = \frac{2 \cdot 2 \text{ /s}}{5 \cdot 0 \times 10^{-6} \text{ s}} = \frac{2 \cdot 2 \times 10^{-6} \text{ s}}{5 \cdot 0 \times 10^{-6} \text{ s}}$	muons.	1
$t_0 = t_0 \qquad t_0 = 5.0 \text{ /s.} = 5.0 \times 10^{-6} \text{ s.}$ $t_0 = 2.2 \text{ /s.} = 2.2 \times 10^{-6} \text{ s.}$ $t_0 = 2.2 \text{ /s.} = 2.2 \times 10^{-6} \text{ s.}$ $t_0 = 2.2 \text{ /s.} = 2.2 \times 10^{-6} \text{ s.}$ $t_0 = 2.2 \times 10^{-6} \text{ s.}$	Time allacor.	
$\frac{t_0 = 2.2 \text{ ps} = 2.2 \text{ x/o} \text{ s}}{5.0 \text{ x/o}^{-6} \text{ s}} = \frac{2.2 \text{ x/o}^{-2.5}}{\sqrt{1 - \sqrt{2}}}$ $\sqrt{1 - \sqrt{2}} = \frac{2.2 \text{ x/o}^{-6} \text{ y/s}}{5.0 \text{ x/o}^{-6}}$	(b) Calculate the velocity of the muons as they leave the accelerator.	3
$\sqrt{1 - \frac{\sqrt{2}}{3.60 \times 10^{8}}} = \frac{2.2 \times 10^{-6}}{5.0 \times 10^{6}}$	$t_0 = \frac{t_0}{\sqrt{1-c^2}}$ $t_0 = \frac{5.0 \text{/s}}{1} = \frac{5.0 \text{/s}}{5.0 \text{/s}} = \frac{5.0 \text{/s}$	
$\sqrt{1 - \frac{\sqrt{2}}{3.60 \times 10^6}} = \frac{2.2 \times 10^{-6}}{5.0 \times 10^6}$	$\frac{5.0 \times 10^{-6} \text{ s}}{\sqrt{1 - \frac{10^{-2.5}}{3.60 \times 10^{8} \text{ m/s}}}}$	
(734)	$\sqrt{1 - \frac{\sqrt{2}}{3.00 \times 10^6}} = \frac{2.2 \times 10^{-6}}{5.0 \times 10^{-6}}$ $\sqrt{2} = \frac{2.2 \times 10^{-6}}{5.0 \times 10^{-6}}$ $\sqrt{2} = \frac{2.2 \times 10^{-6}}{5.0 \times 10^{-6}}$	
$1 - \frac{\sqrt{2}}{3.00070} = \frac{(2.2)^2}{3.000} = 1 - (\frac{2.2}{5.0})^2$		
$U = \sqrt{3.00 \times 10^{\frac{4}{5}} (1 - (\frac{2.2}{5.0})^{2})}$ $= 15553.78 \text{ m/s}$ $-13 - = 1.6 \times 10^{\frac{4}{5}} \text{ m/s}$	= 15553.78 m/s	

Question 17 (6 marks)

A rocket was launched vertically to probe the upper atmosphere. The vertical velocity of the rocket as a function of time is shown in the graph.

(a) Using either words or calculations, compare the acceleration of the rocket at t = 20 s with its acceleration at t = 100 s.

Acceleration at $t = 20 \text{ s} = \frac{0.5}{20} = 0.025 \text{ km s}^2$ acceleration at $t = 100 \text{ s} = \frac{4}{100} = 0.04 \text{ km s}^2$ The acceleration at $100 \text{ s} = 0.04 \text{ km s}^2$

(b) Account for the shape of the graph over the range of time shown.

During the first 1200 the rocket is increasing in velocity, it is accelerating.

After the 1200 mark the This is because it is burning up fuel Since Fing the tess mass, the greater the acceleration.

After the 1200 mark the velocity decreases proportional to time this could mean that the rockets engine might be turned affor it has stoped burning for and is allowing the rock to go on tests momentum gained of Studies NSW 2001