Question 21 (4 marks)

In his science fiction novel *From the Earth to the Moon*, Jules Verne describes how to launch a capsule from a cannon to land on the moon. To reach the moon, the capsule must leave the cannon with a speed of 1.06×10^4 m s⁻¹. The cannon has a length of 215 m, over which the capsule can be assumed to accelerate constantly.

(a) Calculate the magnitude of the acceleration required to achieve this speed using this cannon.

2

$a = v^2$	=> (1.06E4)2	= 261302ms-2 (negrestins)
U2+25	02 + 2× 215	,
n in in in call is	= 261302.3256	Roded a ppit men – c viek et

(b) Referring to your answer in part (a), explain why Jules Verne's method is unsuitable for sending a living person to the moon.

2

H is unreasonable to send humans to the moon using
this method, because accelerations of such magnitude
are too great for the human body to withstand.
<u> a angles de la </u>