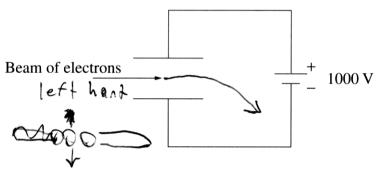
Question 25 (6 marks)

A pair of parallel metal plates, placed in a vacuum, are separated by a distance of 5.00×10^{-3} m and have a potential difference of 1000 V applied to them.

Calculate the magnitude of the electric field strength between the plates. (a)

1


Calculate the magnitude of the electrostatic force acting on an electron between (b)

1

the plates. $F = 9E = -1.602 \times 10^{-19} \times 20000 = -3.204 \times 10^{-15} N/M$

A beam of electrons is fired with a velocity of 3.00×10^6 m s⁻¹ between the (c) plates as shown. A magnetic field is applied between the plates, sufficient to cancel the force on the electron beam due to the electric field.

4

Calculate the magnitude and direction of the magnetic field required between the plates to stop the deflection of the electron beam.

the plates to stop the deflection of the page $F = BLL = 51 \times 0$ $F = QVB = 51 \times 0$ $F = -1.602 \times 10^{-10} \times 20000 \times 0$ $F = 3.0204 \times 10^{-15} = -1.602 \times 10^{-19} \times 2000 \times 0$ tesia