

a) i) Eclipsing binaries are detected by their
periodic change in apparent
magnitude. If the two stars
are a small bright star and a
large dim star then was when
the large star is infront of the di
Small star it would block
out much of the light and
astronomers would notice.
a sharp decrease in the
binary's apparent magnitude.
And when the small star is
infrom of the large the
binary would appear much
brighter due to the addition of
both the stars' brightness.
•

(ii) If we know the period of the boian
binary then the radius of their orbit can be found.
Then using this equation: $m_1 + m_2 = \frac{4\pi^2 r^3}{6\tau^2}$
The total mass of the system can
be determined.
6) (i) Lalande 21185 is the most blue
(li) Ross 154: M=m-5log(d)
= 10.37 - 5 log (6.297)
= 13.01
let Ross 154 be In and ma
Cet Proxima Centauri be IB and Ms
$\frac{I_A}{I_B} = 100 (m_B - m_A)/5$
= 100 0.64/5
= 1.80
Therefore Ross 154 is brighter by a factor
Therefore Ross 154 is brighter by a factor of 1.80

c) (i) White dwarfs are found in
position S on the H-R diagram.
White dwarfs are near the
end of a Star's life,
all the energy source has been
used up so no more nuclear
reactions are taking place.
This would been that white
dwarfs are not as boom
Luminous as other stars.
White dwarfs owe the cover of
a planetary rebula and this would mean that
this would mean that
its surface temperature is
its surface temperature is

(11)	Nite dwarfs are considered
	Stable because they are extremely
	dense and this prevents any
V	nove gravitational collapse that
	will make a star unstable.
(iii)	Hydrogen burning exists in
	main sequence stars. One nuclear
	reaction taking place is the
	proton-proton chain.
	Two hydrogens combine to make a heavier hydrogen. The
	heavier hydrogen combine to
	create a light helium. This
	process repeats so that there
	a two light beliums and
	they reaction to become
	they reaction to become one helium and 2 hydrogens.

d) Adaptive optics is a fast
feed back system that corrects
ad atmospheric distortion with
the use of mirrors. This improves
the 30 resolution of the ground
based telescopes because by the
time the light was from the
Star reaches the observer the
adoptive optics system would have
corrected any distortion and the
image would be much cleaver
and brighter.
Interferometry has also improved
the resolution and sensitivity of
ground based astronomy. With
the use of many radio telescopes
the information Ogathered about
a stellar object can be multiplied. This is like
multiplied. This is like
using one very large telescope

with a great radius to gather information
with a great radius to gather information and will increase the resolution
and sensitivity.
Thotoelectric photometry has also
improved sensitivity and resolution
because it digitally stores information
which can be multiplied and
manipulated. Photoelectric photometry
does not require a référence
star & and is much more effective
than photographic photometry.
· · · · · · · · · · · · · · · · · · ·