

30	a i) An eclipsing binary varies in luminosity as
	the two stars orbit their centre of mass. It
	becomes apparent when the luminosity is
	graphed against time. The graph with took the
	A points The graph will
	periodically decrease at one
	star is higher by the st other
	11) All binary stors must obey Newtons
	Universal Law of Gravitation. This means
	that once the radius has been measured,
	for example by use of trigonometric parallax, the
	two masses can then be deduced by
	Measuring there amarent magnetude after finding
	the period and using the equation $M_1 + M_2 = \frac{4\pi^2 r^3}{GT^2}.$
	$M_1 + M_2 = \frac{4\pi^2 \Gamma^3}{CT^2}$

b 1	Lalande	21185

ii) H	= 100 (MB-MA)/S	Mo = 11.01
1	= 100 <u>2</u>	MA = 10.37
•	= 1.8 times brighter	

14)

$$d = \frac{1}{p}$$
 $p = 1.82$

= 0.54945 light years

- c i) While dwarfs would be found at 5. This
 IS because they have low luminosity (they
 are dull) and their surface temperature is
 average (10000K-30000K)
- in size because once a char reaches

 white dwarf, Here are no more nuclear
 reachons laterng place. Therefore the star
 is no longer heating or cooling and will
 not shrink.
- III) A star located in the main sequence undergoes the nuclear reaction of fustion. In this case, the stars source of fuel (hydrogen) is fusing to form the travier element helium. After it does this it will increase in size and become a red grant.

d) Ground based astronomy is restricted. somewhat in resolution and sensitivity. However the development of adaptive optics and inferometry have allowed the recolution and sensitivity to improve. Inferometry's main improvement is with sensitivity. It is the idea of using two klescopes at different locations to view the same celestral abject. This improves songetivy because sonsitivity is mesone the belescapes light gallering ability and is measured by the area (and therefore the diametre) of the telescopes lens, and because there is two telescopes; it effectivily increased the area to include the distance between the two telescopes. This improves sensitivity. The use of adaptive optice has improved resolution. This is because the resolution of a lelescape is somewhat hampered by blurry spots on the lens. The way adaptive aphos has overcome Iths is through the uses of computers. With the

BOARD OF STUDIES NEW SOUTH WALES					
was of soon help of computers, asmonomers					
are able to reduce those 'blurry spots' and					
therefore increase resolution. These					
developments have improved resolution and					
sensitivity of ground based astronomy					
dramatically.					